Nonnegative least squares solution in inequality sense via LCP reformulation

نویسندگان

  • Maziar Salahi
  • Akram Taati
چکیده

In this paper, a monotone linear complementarity reformulation of the nonnegative least squares problems in inequality sense is introduced. Then Mehrotra’s predictor-corrector interior point algorithm is applied to solve the resulting monotone linear complementarity problem. Our numerical experiments on several randomly generated test problems show that Mehrotra’s algorithm overperforms the widely used generalized Newton-penalty method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints

In this paper, an algorithm is introduced to find an optimal solution for an optimization problem that arises in total least squares with inequality constraints, and in the correction of infeasible linear systems of inequalities. The stated problem is a nonconvex program with a special structure that allows the use of a reformulation–linearization–convexification technique for its solution. A b...

متن کامل

Random Projections for the Nonnegative Least-Squares Problem

Constrained least-squares regression problems, such as the Nonnegative Least Squares (NNLS) problem, where the variables are restricted to take only nonnegative values, often arise in applications. Motivated by the recent development of the fast Johnson-Lindestrauss transform, we present a fast random projection type algorithm for the NNLS problem. Our algorithm employs a randomized Hadamard tr...

متن کامل

NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS

We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...

متن کامل

Solving Mixed-Integer Quadratic Programs Via Nonnegative Least Squares

Abstract: This paper proposes a new algorithm for solving Mixed-Integer Quadratic Programming (MIQP) problems. The algorithm is particularly tailored to solving small-scale MIQPs such as those that arise in embedded hybrid Model Predictive Control (MPC) applications. The approach combines branch and bound (B&B) with nonnegative least squares (NNLS), that are used to solve Quadratic Programming ...

متن کامل

Implicit solution function of P0 and Z matrix linear complementarity constraints

Using the least element solution of the P0 and Z matrix linear complementarity problem (LCP), we define an implicit solution function for linear complementarity constraints (LCC). We show that the sequence of solution functions defined by the unique solution of the regularized LCP is monotonically increasing and converges to the implicit solution function as the regularization parameter goes do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014